

GENETICS: Suggested Courses for 2018-2019

Course	Title	Description	Offered	Units	Prerequisites
ANG	Horse Genetics	Coat color, parentage testing, medical genetics, pedigrees, breeds,	Winter	3	ANS 15 and BIS
105		the gene map and genus Equus. Emphasis on understanding horse	EOY odd		101
		genetics based on the unity of mammalian genetics and making			
		breeding decisions based on fundamental genetic concepts.			
ANG	Molecular Biology	Introduction to the concepts and techniques used in molecular	Fall,	4	BIC 2C, BIS101,
111	Laboratory	biology; the role of this technology in both basic and applied	Winter		ABI103/BIS103
	Techniques	animal research, and participation in laboratories using some of			
		the most common techniques in molecular biology.			
ANS	Animal Cell	Techniques of cell culture, with emphases on cell physiology and	Winter	4	ABI102/BIS102,
198	Culture	the actions of drugs and toxicants on cultured somatic cells.			ABI103/BIS103,
(133)	Laboratory	Design, performance and interpretation of experiments with			NPB
		animal cells in vitro			101/ANS100
ANS	Management of	Laboratory animal management procedures in view of animal	Fall	4	NPB 101/ANS
140	Laboratory	physiology, health and welfare, government regulations,			100
	Animals	experimental needs. Clinical techniques using rodents and rabbits			
		as models.			
ANS	Companion	Management and production of companion animals. Integration of	Fall	4	ANS 42, BIS
142	Animal Care and	the disciplinary principles of behavior, genetics, nutrition, and			101, NPB
	Management	physiology as related to the care of companion animals.			101/ANS 100;
					ABI 102, ABI
					103 rec.
ANS	Pig and Poultry	Care and management of swine, broilers and turkeys as related to	Fall,	4	ANS 41,
143	Care and	environmental physiology, nutrition and metabolism, disease	EOY odd		NUT 115,
	Management	management and reproduction.			NPB 101/ANS
					100
ANS	Beef Cattle and	Genetics, physiology, nutrition, economics and business in beef	Spring	4	ANS 41,
144	Sheep Production	cattle and sheep production. Resources used, species differences,			NUT 115, and
		range and feedlot operations. Emphasis on integration and			ANG 107 rec.
		information needed in methods for management of livestock			
		enterprises.			

ANS	Dairy Cattle	Scientific principles from genetics, nutrition, physiology, and	Spring	5	ANS 124,
146	Production	related fields applied to conversion of animal feed to human food			NUT 115, and
		through dairy animals. Management and economic decisions are			ANG 107 rec.
		related to animal biology considering the environment and animal			
		well-being.			
AVS	Avian	Unique features of avian development and genetics. Development	Fall	3	BIS 2AB
103	Development and	topics: gametogenesis, fertilization, pre- and post-oviposital			
	Genomics	development, morphogenesis, sex differentiation, specialized			
		organ systems, incubation, hatching. Genetic topics: genome			
		organization, inheritance, sex determination, avian models.			
		Laboratory exercises: embryology, genetics, model systems			
BIS	Genomics	Computational approaches to model and analyze biological	Spring	5	BIS 181, BIS 183
180L	Laboratory	information about genomes, transcriptomes, and proteomes.			(concurrent ok);
		Topics include genome assembly and annotation, mRna and small			MCB 182
		RNA profiling, proteomics, protein-DNA and protein-protein			
		interactions, network analysis, and comparative genomics.			
		Computer programming experience not required.			
BIS	Comparative	Comparison of genomes at the population and species level.	Fall	3	BIS 101
181	Genomics	Genomic techniques for mapping disease (and other) genes,			
		reconstruction of evolutionary history and migration patterns,			
		determination of gene function, prediction of organismal traits,			
		and metagenomics; determination of community composition and			
DIG		function.			DIG 404
BIS	Functional	Overview of genomic methodologies and key biological findings	Spring	3	BIS 101;
183	Genomics	obtained using genome-wide analyses. RNA profiling, small			ABI102/BIS102
		RNAs, epigenomics, chromatin immunoprecipitation, protein-			
		DNA interactions, proteomics and network analysis.			
BIT	Applied	Concepts and programs needed to apply bioinformatics in	Fall	4	BIS 101
150	Bioinformatics	biotechnology research. Sequence analysis and annotation and use	1 all	-	PI \$21/FC\$15
150	Diomiormatics	of plant and animal databases for students in biological and			PLS120/STA100
		agricultural sciences. Limited enrollment.			or consent

BIT 161A	Genetics and Biotechnology	Techniques of genetic analysis at the molecular level including recombinant DNA, gene mapping and basic computational	Winter	6	PLS 152 or BIS 101 or
	Laboratory	biology.			consent
BIT 171	Professionalism and Ethics in Genomic and Biotechnology	Real and hypothetical case studies to illustrate ethical issues in genomics and biotechnology. Training and practice in difficult ethical situations and evaluating personal and social consequences.	All	3	Upper Division Standing
EVE	Population and	Evolution as caused by random mating, genetic drift, natural	Fall	4	BIS 101, STA
102	Quantitative	selection, inbreeding, migration, and mutation in theory and	EOY	•	100,
	Genetics	actuality. The resemblance between relatives and consequences of	even		EVE 100
		selection of quantitative traits. Application of these ideas to topics			
		such as the evolution of sex.			
EVE	Human Genetic	Introduction to genome-wide nucleotide sequence variation in	Fall,	3	BIS 2B
131	Variation and	human populations and computational methods for its analysis.	EOY odd		
	Evolution	Topics to include forensics, disease gene mapping, and studies of			
		human evolutionary history. Misuses, such as eugenics, and			
		ethical/legal issues will be discussed.			
EVE	Evolution of	Comparative analysis of animal development and the genetic basis	NCO	3	BIS 101; EVE
150	Animal	of morphological diversification.			100
~ ~ ~	Development				
GBD	The Microbiome	Examination of the structure and function of microbial	Winter	3	BIS2ABC
103	of People,	communities that live inside and on host organisms. Introduction			
	Animals, Plants	to general concepts of the microbiome and microbiota, and their			
MIC	Decembrant	relationship to nost health and disease.	E-11	2	DIC 101
MIC 115	Recombinant	Cloning and analysis of recombinant DNA, with emphasis on	Fall	3	BIS 101 or
115	DNA Cloning and	Escheric ma coll host-vector systems. DNA-modifying enzymes,			equivalent
	Anarysis	vectors and their use, manipulation and expression of insert DIVA,			
MCB	Advanced	Structure, expression, and regulation of eukarvotic genes	A 11	3	BIS 101
121	Molecular Biology	Chromosome structure and replication: gene structure	All	5	BIS 101, BIS 102/ABI 102
141		transcription and RNA processing protein synthesis and			(conc ok)
		translation control: development, immune system, and oncogenes			
		Not open in MCB 161 already taken.			

MCB	Mechanisms of	The molecules and mechanisms that allow eukaryotic cells to	Fall	3	BIS 101,
144	Cell Division	coordinate cell growth, DNA replication, segregation of			ABI 102/BIS102,
		chromosomes and cell division.			and BIS 104
MCB	Principles of	Laboratory work in basic and molecular genetics including gene	All	4	BIS 101
160L	Genetics	mapping and isolation of mutants. Not open if Genetic 100L			
	Laboratory	already taken.			
MCB	Human Genetics	Human molecular genetic variation, molecular basis of metabolic	Fall	3	BIS 101
162	and Genomics	disorders, chromosome aberrations and consequences, analysis of			
		the human genome, and computational techniques of genetic &			
		genomic analysis.			
MCB	Developmental	Current aspects of development genetics. Historical background	Winter	3	MCB 121
163	Genetics	and current genetic approaches to the study of development of			(conc. ok)
		higher animals.			
MCB	Advanced	The five basic operations of genetic analysis: mutation,	Winter	3	MCB 121
164	Eukaryotic	segregation, recombination, complementation, and regulation.			
	Genetics	Emphasis on the theory and practice of isolating and analyzing			
		mutations, as well as understanding mechanisms underlying both			
		Mendelian and epigenetic inheritance.			
MCB	Principles of	Fundamentals of genomics, including structural genomics,	Winter,	3	BIS 101
182	Genomics	functional genomics, proteomics, and bioinformatics, focusing on	Spring		
		the impact of these disciplines on research in the biological			
		sciences. Social impacts of genomic research.			
MIC	Introductory	Essentials of microbial biology, emphasizing phylogeny,	All	3	BIS 2A, CHE 2B
102	Microbiology	physiology, genetics, ecology, and pathogenesis. Interactions with			
		other microbes, humans, and the biosphere. Uses of microbes in			
		agriculture and biotechnology			
MIC	Introductory	Introduction to principles and laboratory methods employed in	All	2	MIC 102,
103L	Microbiology	working with microorganisms. Designed for students requiring			CHE2B
	Laboratory	microbiology for professional school admission.			
NPB	Nature vs. Nuture:	Biochemical, physiological, genetic, and nutritional causes of	Fall	3	BIS2A or
132	Physiological	important medical problems such as obesity, anorexia, heart			consent
	Interactions	disease and diabetes.			
	Among Genes,				
	Nutrients and				
	Health				

PMI	Biology of Animal	Fundamental physical and chemical properties of animal viruses;	Spring	3	BIS102/ABI 102
128	Viruses	methods of propagation, purification and assay. Mechanisms of			
		viral replication and pathogenesis of viral infections in man and			
		animals. Immunity to virus diseases and oncogenic properties of			
		animal viruses. Only 2 units of credit for students who have			
		completed MCB 162.			